Code and text for quiz 4.
Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file to file_csv
. The data should be in the same directory as this file.
Read the data into R and assign it to emissions
.
emissions
emissions
# A tibble: 23,307 x 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
emissions
data THEN-use clean_names
from the janitor package to make the names easier to work with -assign the output to tidy_emissions
-show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 x 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
6.Start with the tidy_emissions
THEN -use filter
to extract rows with year==2000
THEN -use skim
to calculate the descriptive statistics
Name | Piped data |
Number of rows | 228 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 228 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 216 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 2000.00 | 0.00 | 2e+03 | 2000.00 | 2000.00 | 2000.00 | 2000.00 | ▁▁▇▁▁ |
annual_co2_emissions_per_capita | 0 | 1 | 5.15 | 6.93 | 2e-02 | 0.74 | 2.97 | 7.85 | 57.41 | ▇▁▁▁▁ |
tidy_emissions
then extract rows with year==2000
and are missing a code# A tibble: 12 x 4
entity code year annual_co2_emissions_per_ca~
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2000 1.09
2 Asia <NA> 2000 2.43
3 Asia (excl. China & India) <NA> 2000 3.36
4 EU-27 <NA> 2000 8.44
5 EU-28 <NA> 2000 8.58
6 Europe <NA> 2000 8.47
7 Europe (excl. EU-27) <NA> 2000 8.47
8 Europe (excl. EU-28) <NA> 2000 8.19
9 North America <NA> 2000 14.7
10 North America (excl. USA) <NA> 2000 5.48
11 Oceania <NA> 2000 12.6
12 South America <NA> 2000 2.36
Entities that are not countries do not have country codes.
Start with tidy_emissions THEN
-use filter
to extract rows with year == 2000 and without missing codes THEN -use select
to drop the year
variable THEN -use rename
to change the variable entity
to country
-assign the output to emissions_2000
9.Which 15 countries have the highest annual_co2_emissions_per_capita
?
-start with emissions_2000
THEN -use slice_max
to extract the 15 rows with the annual_co2_emissions_per_capita
-assign the output to max_15_emitters
10.Which 15 countries have the lowest annual_co2_emissions_per_capita
?
-start with emissions_2000
THEN -use slice_min
to extract the 15 rows with the lowest values -assign the output to min_15_emitters
11.Use bind_rows
to bind together the max_15_emitters
-assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
12.Export max_min_15
to 33 file formats
13.Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") # comma separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe separated
14.Use setdiff
to check for any differences among max_min_15_csv
, max_min_15_tv
and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
Are there any differences?
15.Reorder country
in max_min_15
for plotting and assign to max_min_15_plot_data
-start with emissions_2019
THEN -use mutate
to reorder country
according to annual_co2_emissions_per_capita
16.Plot max_min_15_plot_data
17.Save the plot directory with this post
18.Add preview.png to yaml chuck at top of this file
preview