Code for quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
, health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
, respectively.glimpse
to get a glimpse of the dataRows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observation for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer~
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer~
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer~
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer~
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer~
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer~
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer~
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer~
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer~
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer~
Start with drug_cos
Extract observations for the ticker JNJ from drug_cos
Assign output to the variable `drug_cos_subset
drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John~ New Jer~ 0.247 0.687 0.149 0.199 0.161
2 JNJ John~ New Jer~ 0.272 0.678 0.161 0.218 0.173
3 JNJ John~ New Jer~ 0.281 0.687 0.194 0.224 0.197
4 JNJ John~ New Jer~ 0.336 0.694 0.22 0.284 0.217
5 JNJ John~ New Jer~ 0.335 0.693 0.22 0.282 0.219
6 JNJ John~ New Jer~ 0.338 0.697 0.23 0.286 0.229
7 JNJ John~ New Jer~ 0.317 0.667 0.017 0.243 0.019
8 JNJ John~ New Jer~ 0.318 0.668 0.188 0.233 0.244
# ... with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John~ New Jer~ 0.247 0.687 0.149 0.199 0.161
2 JNJ John~ New Jer~ 0.272 0.678 0.161 0.218 0.173
3 JNJ John~ New Jer~ 0.281 0.687 0.194 0.224 0.197
4 JNJ John~ New Jer~ 0.336 0.694 0.22 0.284 0.217
5 JNJ John~ New Jer~ 0.335 0.693 0.22 0.282 0.219
6 JNJ John~ New Jer~ 0.338 0.697 0.23 0.286 0.229
7 JNJ John~ New Jer~ 0.317 0.667 0.017 0.243 0.019
8 JNJ John~ New Jer~ 0.318 0.668 0.188 0.233 0.244
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker
, name
, location
, and industry
are the same for all the observationsco_name
co_location
co_industry
groupPut the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Johnson & Johnson is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group.
Start with combo_df
Select Variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assign the output to combo_df_subset
combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
Create the variable grossmargin_check
to compare with the variable grossmargin. They should be equal. *
grossmargin_check= gp/revenue`
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less that 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp/revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome/revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchuncks in the Rmd file for this quiz
Use the health_cos
data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics & Re~ 13.1 12.3 0.399
3 Drug Manufacture~ 19.4 19.5 -34.9
4 Drug Manufacture~ 5.88 9.01 -76.0
5 Healthcare Plans 3.28 3.37 -0.305
6 Medical Care Fac~ 6.10 6.46 1.40
7 Medical Devices 12.4 14.3 -56.1
8 Medical Distribu~ 1.70 1.03 -0.102
9 Medical Instrume~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
mean_net_margin_percent for the industry Diagnostics & Research is 13.1%
median_net_margin_percent for the industry Diagnostics & Research is 12.3%
min_net_margin_percent for the industry Diagnostics & Research is 0.399%
max_net_margin_percent for the industry Diagnostics & Research is 26.3%
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker ILMN from health_cos
and assign to the variable health_cos_subset
health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illumina ~ 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illumina ~ 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illumina ~ 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illumina ~ 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illumina ~ 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illumina ~ 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illumina ~ 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illumina ~ 3.33e9 2.3 e9 6.23e8 826000000 6.96e9 3114000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct
. Go to help pane to see what distinct
does
In the console, type ?pull
. Go to help pane to see what pull
does
Run the code below
co_name
You can take output from your code and include it in your text
In following chunk * Assign the company’s industry group to the variable co_industry
This is outside the R chuck. Put the r inline used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Illumina Inc is a member if the Diagnostics & Research group.
start with health_cos THEN
group_by industry THEN
calculate the median research and development expenditures as a percent of revenue by industry
assign the output to df
glimpse
to glimpse the data for the plotsRows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
Use ggplot
to initialize the chart
Data is df
the variable industry
is mapped to the x-axis
med_rnd_rev
the variable med_rnd_rev
is mapped to the y-axis
add a bar chart using geom_col
use scale_y_
continuous to label the y-axis with percent
use coord_flip()
to flip the coordinates
use labs to add title, subtitle and remove x and y-axis
use theme_ipsum()
from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev),
y = med_rnd_rev
)) +
geom_col()+
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
df
arrange
to reorder med_rnd_rev
e_charts
to initialize a chart
industry
is mapped to the x-axise_bar
with the values of med_rnd_rev
e_flip_coords()
to flip the coordinatese_title
to add the title and the subtitlee_legend
to remove the legendse_x_axis
to change format of labels on x-axis to percente _y_axis
to remove labels on y-axise_theme
to change the theme. Find more themes heredf %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry,
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits =0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")